
Don Lancaster
Synergetics

Lowercase for
Your Apple II (Part II)

The first part of this article introduced an inexpensive hardware mod to transform the Ap­
ple II into an uppercase/lowercase machine. Now for the software to complete the mod.

I
n part 1, we Introduced a low­

cost hardware modification to

turn your Apple II into a com­

bined uppercase/lowercase

computer. In part 2 of this arti­

cle, we will examine the soft­

ware needed to complete the

modification.

have on-line, and you'll want an

extensive editing capability. So,

let's look at three different lev­

els of software involvement.

How much software you need

depends on what you want to

do with your new lowercase

ability. If you are only going to

use it to annotate an occa­

sional game, very little new

software will be needed. Most

likely, your lowercase software

will have to interact with any

floppy disks or printers you

First, we'll use the absolute

minimum to display lowercase

on the screen. Then, we'll show

you software that lets you fill

the screen with mixed upper­

case and lowercase, with a

working carriage return, scroll

and so on. Finally, we'll check

into a "heavyweight" full lower­

case editing program that lets

you put any character you want

anywhere on the screen with·

out the prompts and with full

and easy editing. From here on,

32 33
\ a

48 49

p q

34 35

b c
50 51

s

36

d

52

37

e
53

u

Lowercase
38 39 40 41

f g h I
54 55 56 57

w

Uppercase

42 43 44

j k I

58 59 60

<

45 46

m n

61 62

>

47

0
63

•

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

® A B C D E F G H K L M N 0
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

P Q R S T U V W X Y Z [\ I

Numerals
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
spc # S % & () +
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

0 1 2 3 4 5 6 7 8 9 < >

Fig. 1. Decimal character codes needeCi for direct POKEing into
display memory. Use software only to flash lowercase. To flash up­
percase or numerals, subtract 64 from the decimal value or use

software. Decimal numbers now shown are redundant.

34 Microcompuling, December 1979

you'll be on your own to inter­

act with what you really want to

do with your new lowercase

ability.

We will use integer BASIC for

our software. This is easy but

risky. Cursor and entry pro­

grams are fast and efficient

when written in machine lan­

guage. Integer BASIC may end

up too slow for some things,

particularly for repeatedly in­

serting and deleting charac­

ters. But integer BASIC is flex­

ible and easy to use. It's also

easy to change. So, we'll use

the integer BASIC route. If

things turn out a bit slow, we

can pull some of the stunts in

the green Apple book to speed

things up. Once you know ex­

actly what you want, you can

go the machine-language route.

We will note in passing that

there are simple and elegant

machine-language cursor and

entry manipulations already in

the Apple monitor. These are

available for call to an integer

BASIC program. But, many of

these sequences demand up­

percase only and are restrictive

in how you access them. So, we

will avoid using what Is already

on hand-unless these se­

quences clearly and simply

speed things up for us without

creating more hassles than

they solve.

Direct Entry

The minimum software route

for displaying lowercase is to

simply POK E the value of the

character into the place you

want it to go on the screen. This

is very limited if you want to put

down more than a few charac­

ters at once.

We'll shortly see what the

decimal memory locations of

every point on the display are.

For instance, we'll find out that

the bottom line of the screen

goes from decimal 2000 at the

left to decimal 2039 at the right.

Fig. 1 shows you the correct

character codes for all the char­

acters as they are to be stored

in memory. For instance, say

you want to put a character on

the bottom line, third from the

left. For an uppercase A, use

POKE 2002,129. For a lower­

case a, use POK E 2002, 33, and

so one.

The missing numbers in Fig.

1 are repeats of the characters

already shown. A POKE in the

range of 64 to 127 will flash an

uppercase character or letter. I

haven't found a good hardware

way to flash lowercase, so we

will use software for flashing or

winking cursors. More on this

later.

A. To read the keyboard:

200 CHAR= PEEK(-16384): IF CHAR<127 THEN 200: POKE (-16368),0

This sequence stays at 200 till a key is pressed. Key value before strobe reset

appears as CHAR.

B. To print the decimal value of a pressed key:

200 CHAR= PEEK(-16384): IF CHAR<127 THEN 200: POKE (-16368),0:

PRINT CHAR: GOTO 200
This sequence stays at 200 till a key is pressed. Key decimal value is dis­

played for each new key pressed. CTRL C stops the action.

C. To stop a program without scrolling or prompting:

600 GOT0600

This trap holds the screen and prevents scrolling or prompting. To get out of

the trap, use CTRL C.

D. To measure the speed of an integer BASIC sequence:

100 FOR N = 1 TO 10000

200 (((((SEQUENCE GOES HERE)))))

300 NEXT N

The execution time in milliseconds equals one-tenth the number of seconds

from RUN till the speaker beeps, minus the time (about 1 millisecond) to run
without step 200.

Fig. 2. Apple II integer BASIC utility sequences.

Four Utility Sequences

It's far more desirable to get

your characters from the key­

board than extracting them

from memory or using POKE

commands. Before we look at

the lowercase keyboard entry

data, let's pick up some integer

BASIC utility sequences that

may be very handy for us. Four

of these sequences are shown

in Fig. 2.

First and most important, we

have to be able to read the key­

board without using a carriage

return for every character. Fig.

2a shows us how to do this. The

Apple II keyboard is located at

decimal -16384. If a key is

pressed, the number at this lo­

cation will exceed decimal 127,

NORMAL SHIFT

1 (177) (161)

2 (178) (162)

3 (179) # (163)

4 (180) $ (164)

5 (181) 'lo (165)

6 (182) & (166)

7 (183) (167)

8 (184) ((168)
9 (185)) (169)
0 (176) 0 (176)

(186) (170)

173 189

ESC (155) (155)

a (209) ()

w (215) w (215)

E (197) E (197)

R (21) R (210)

T (212) T (212)

y (217) y (217)

u (213) u (213)

I (201) I (201)

0 (207) 0 (207)
p 208 (ill 192

RETURN (141) CR (141)

and the value will correspond to

the selected key.

We'll call the look at the key­

board CHAR, short for charac­

ter. We'll keep looking at the

keyboard with the PEEK com­

mand. A CHAR that is more

than 127 means a key has been

pressed, so we save the value

of CHAJ=I. Then we reset the

keyboard strobe with the POKE

(-16368),0 command shown.

Be sure to always reset the key­

board after you read it. Your val­

ue for CHAR is the decimal

equivalent of the pressed key. It

can be used in the next step of

your program or saved till need­

ed. After you are done with this

particular key, jump to 200 to

await a new closure.

CTRL

1

2

3

4

5

6

7
8
9
0

ESC

DC1

ETB

ENO

DC2

DC4

EM

NAK

HT

S I

OLE
CR

(177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)
(185)
(176)

(186)
(173)

(155)

(145)

(151)

(133)

(146)

(148)

(153)

(149)

(137)

(143)

(144)

(141

A

s
D

F

G

H

J
K
L

z
x
c
v
B

N

M

NORMAL

(193)

(211)

(196)

(198)

(199)

(200)

(202)

(203)
(204)
(187) 1 (136)

11491
(218)

(216)

(195)

(214)

(194)

(206)

(205)

(172)

(174)

I (175)

SPACE (160)

You can print the decimal val­

ues of all the keys simply by

adding a PRINT CHAR com­

mand. This will display the val­

ue of each key as it is pressed

(see Fig. 2b). The results of this

for all the keys are shown in

Fig. 3. You'll find this chart con­

venient to decode the various

control functions. We see that

the Apple II keyboard has no

apparent way to provide lower­

case characters, as well as the

uppercase \ and [. Control

characters NUL, FS, GS, RS

and US are also not immediate­

ly available. Uppercase) is hid­

den as a shifted M and is used

as the AppleSoft prompt.

One of the more infuriating

things that happens when you

are building a display editing

program is that you put some­

thing somewhere, and then the

BASIC throws in a scroll and a

prompt, moving everything up

the screen. To temporarily de­

feat the return to BASIC, just

use a trap such as the 600 GO­

TO 600 shown in Fig. 2c. Your

program will stick in the trap till

you release it. This allows you to

watch part of a program to make

sure it is doing what you want it

to. To release your trap, use

CTRL C. You must, of course,

eliminate all traps from your fi­

nal program.

Suppose something we do

turns out too slow. How can we

find out how fast our BASIC is

A

s
0
F

G

H

J
K
L
+

BS

NAK

z
x
c
v
B

t
I

SHIFT

(193)

(211)

(196)

(198)

(199)

(200)
(202)

(203)
(204)
(171)

(136)

(1491

(218)

(216)

(195)

(214)

(194)

(222)

(221)

< (188)

> (190)

? (191)

SPACE (160)

SOH

DC3

EOT

ACK

BEL

BS

LF
VT
FF

BS

NAK

SUB

CAN

ETX

SYN

STX

so
CR

CTRL

(129)

(147)

(132)

(134)

(135)

(136)

(138)

(139)
(140)
(187)
(136)

(149)

(154)

(152)

(131)

(150)

(130

(142)

(141)

(172)

(174)

I (191)

SPACE (160)

Fig. 3. Decimal codes for the Apple II keyboard. REPEAT, SHIFT and CTRL act only on other keys. RE­
SET is direct acting. Bordered values= control commands. Values shown are before strobe reset. For

ASCII equivalent, subtract decimal 128.

working for us? Fig. 2d shows

us the way to measure the exe­

cution time of any BASIC se­

quence. What you do is repeat

the sequence over and over

again for 10,000 times in a loop.

The number of tens of seconds

it takes to execute the se­

quence will equal the number

of milliseconds the sequence

actually took. This is easily

timed with a kitchen clock or a

stopwatch. Be sure to subtract

the millisecond it takes for the

timer loop to cycle with nothing

inside the loop.

With luck, you will never need

this speed measurer. But, if

ever you have characters being

ignored or have things taking

far too long in your particular

program, this how-fast-is-it pro­

gram can often show you what

is holding up the works.

A Lowercase Tester

Program A shows us a simple

program that reads the key­

board and puts lowercase char­

acters on the bottom line of the

display for us. The program has

only one feature-it is short.

This makes it convenient for ini­

tial tests. But since it lacks a
cursor and a way to print upper­
case and prints all machine
commands on the screen, we'll

really need a better program for
anything but checkout.

The program is a simple loop

that progresses across the bot­

tom line addresses 2000 to

2039. We read the keyboard in

110, until a key is pressed. Then

we reset the keyboard. If the

character has a value greater

than decimal 192, we subtract

160 from it to convert it to low­

ercase. For instance, an upper­

case A will have a CHAR value

of 193, per Fig. 3. Subtract 160
from this to get 33, the lower­

case a needed in Fig. 2. We then

load the character onto the dis­

play in the cursed position. In­

crementing the loop with the

N EXT CURS Instruction in 150

moves us across the screen

while the GOTO 100 in line 160

resets us to the beginning of

the line.

A Useful Display Program

Let's add some statements

to Program A to make it more

useful. We can scroll at the end

Microcomputing, December 1979 35

of the line to move the state­

ments progressively up on the

display. We can decode a RE­

TURN to do the same thing.

And, if we can only figure out

some way to get both upper­

case and lowercase characters

out of an uppercase keyboard,

we will be home free toward a

simple way to get continuous

uppercase and lowercase

messages displayed.

To trick the keyboard into be­

ing something it is not, we'll

use the ESCAPE key. We'll set

the program up so that under

"normal" conditions you get all

lowercase characters. If you hit

ESCAPE once, only the next

character will be capitalized.

This is just like hitting SHIFT

momentarily on a regular type­

writer.

If you hit ESCAPE twice in a

row, the keyboard will lock into

an uppercase-only mode. This

is just like using the LOCK on a

regular typewriter. If you are

locked into uppercase, hitting

ESCAPE one more time gets you

into lowercase once again, just

as hitting SHIFT after LOCK on

a typewriter puts you back into

lowercase. However, since we

are using software, our ES­

CAPE commands will only ap­

ply to the alphabet-everything

else stays the same.

This may sound complicated,

but it's simple to use. When and

If your Apple II is to have mixed

uppercase and lowercase, just

use ESCAPE instead of SHIFT

to shift the alphabet. Everything

else stays the same.

The software behind this is

simple enough. We have a vari­

able called SHIFT and a vari­

able called LOCK. Every time a

character is entered, it at­

tempts to reset SHIFT to zero

and is allowed to do so if LOCK

Is also a zero.

When an ESCAPE key is

sensed:

1. First you check to see if

LOCK is a 1. If so, this means

you want to release all caps, so

you simply make LOCK a 0 and

SHIFT a 0 and go on to the next

key.

2. Then you check to see if

100 FOR CURS= 2000 TO 2039

110 CHAR= PEEK (-16384): IF CHAR<127 THEN 110

120 POKE (-16368).0

130 IF CHAR>192 THEN CHAR= CHAR -160

140 POKE CURS,CHAR

150 NEXT CURS

160 GOTO 100

Program A. Lowercase test program. Puts lowercase charac­
ters on the bottom display line. Numerals and punctuation ap­
pear normally. Use this program only for hardware checkout.
C TRL-C restores normal BASIC operation.

the previous key is also an ES­

CAPE. If it is, SHIFT must be a

1, since no intervening charac­

ter has a chance to reset SHIFT

back to 0. We then make LOCK

a 1 and go on to the next key.

3. If you got this far, SHIFT

and LOCK must both be 0. This

means you either want to capi­

talize only one word, or else

another ESCAPE will follow to

lock. So, make SHIFT a 1 and

then go on to the next key.

The new, improved program

is shown In Program 8. This en­

ters full alphabet characters

sequentially on the bottom line

for us, with working scroll and

carriage return. SHIFT is used

for everything already on the

keycaps, while ESCAPE is used

to pick upper, lower and mixed

cases. Once again, one ESCAPE

capitalizes only the next char­

acter. Two ESCAPEs capitalize

everything, until a third ESCAPE

resets back to lowercase.

The program works the same

way as Program A does. Line

100 indexes us across the bot­

tom of the screen, while 110

reads the keyboard for us.

Line 120 tests for carriage re­

turn and calls for a scroll if one

is needed. Line 130 tests for

ESCAPE and then does the

shift lock processing in lines

190-210. If shift is not locked,

-------SAVE $------'

Pre-Holiday Special
Dual Disk Drives!.Quad Disk Drives!

IN ONE CASE!
One switch, one cord . • Over 400 K* in one (QUAD)Cabinet.

*Dual Drives $698.00 Includes Cable & TRS 0.0.S.
*Quad Drives $1359.00 Includes Cable & TRS 0.0.S.

-------You would pay $1,000.00 or $2,000.00 at Radio Shacks Prices------

90 Day EXCHANGE GUARANTEE
DEALER INQUIRIES INVITED *All drtves will access 40 tracks when
Send for our NEW FALL/WINTER CATA- with
LOG. Ask about our LOW PRICES on 77 NEWDOS or NEWDOS+ (EXTRA)
Track Drtves. LEVEL IV PRODUCTS, INC . ..-us

=--32238 Schoolcraft, Suite F4 Livonia, Michigan 48154 (313) 525-6200 --=

�----- 11 AM. to 7 P.M. Tuesday - Saturday _____ __.

36 Microcomputing, December 1979

line 140 converts to lowercase.

Line 150 enters the characters

on the screen.
Your turn: What does line 160

do in Program B ? Why is it

needed.
Line 170 tells us to pick the

next character location to the

right. If this happens to be off

the screen to the right, we drop

out of the loop, do a scroll and

start over.

A Full-Performance

Lowercase Editor

The previous "gee-whiz" pro­

grams are handy to put lower­

case on an Apple II. But, what

we really may want is some full

editing system that lets us:

• Put any character anywhere

on the screen.

• Move around anywhere we

like.

•Insert and delete characters

and lines.

• Justify, ragged or flush right.

• Have lines longer than 40

characters.

•Transfer into and out of flop·

py.

• Provide hard-copy output.

•Have an attractive cursor for

all characters.

•Have no BASIC prompts or

unwanted scrolls messing up

the screen.

$H 2s 5+ 7S s+

LEFT
SCREEN

L +

L2

L •

L6

LS

LI+

l l2

LI•

ll6

LIS

L2 0
L2 2

LI

L3

L5

L7

RIGHT
SCREEN

Let's look at some of the bits

and pieces that will be helpful

to build an editor and display

system. Then we'll show you a

medium-complexity display ed·

ltor that lets you wander

around the screen with a ven­

geance. From there, you should

be able to pick up just about as

fancy a text editor as you care

to.

Apple Display

Memory Locations

The A p p l e people were

among the first to recognize the

incredible power and economy

of using main memory also as a

display memory. They do this

by sharing each clock cycle so

that the computer gets the

memory for half a microsecond

and the dedicated system tim·

ing gets the memory for display

uses on the other half.

As you find out fast when you

try to stuff things onto the

screen, the memory locations

are not sequential and are not

all in one piece. How can we

find what goes where?

The Apple II has two display

pages, one residing between

decimal 1024 and 2047 and a

second page immediately above.

Only the first page is normally

used. Fig. 4 shows us a hex map

L9

Lii

Ll3

Ll5

d+ F8 FF

Ll7

Ll9

L21

L23

PAGE 04
PAGE 05

PAGE 06

PAGE 07

\UNUSED LOCATION S

LO IS TOP LINE

L23 IS BOTTOM LINE

Fig. 4. Display memory locations of Apple II shown as hex map.

HO H39
VO 1024................................ 1063

1152 1191

V2 1280 1319

1408

V4 1536

1664

V6 1792

1920

VS 1064

1192

V10 1320

1448

V12 1576
1704

V14 1832
1960

V16 1104
1232

V18 1360

1488

V20 1616

1744

V22 1872

2000

Locations not on screen

1144·1151

1272·1279

1400·1407

152&1535
1656·1663

1784-1791

1912·1919

2040·2047

Each horizontal row is numbered

sequentially from left to right

1447

1575

1703

1831

1959

1103

1231

1359

1487

1615

1743
1871

1999

1143

1271

1399

1527

1655

1783

1911

2039

Fig. 5. Display memory locations of Apple II shown as decimal lo­

cations.

of the Apple 11 display memory

locations. Their mapping is

somewhat similar to the mem­

ory repacking done in the KIM

systems in The Cheap Video

Cookbook (Sams 21524). Apple

chose to stuff three lines per

each half of a 6502's page of

256 words.

Apple uses a 40-character

horizontal line numbered left to

right from 0 to 39. They use a

24-row vertical field numbered

top to bottom from 0 to 23.

Fig. 4 is fine for all us ma­

chine-language freaks. But in­

teger BASIC works in decimal

numbers, and it's not at all obvi-

ous what goes where. Fig. 5 is a

remapping of the Apple II

screen showing us what por­

tion of the memory goes where

on the screen, in decimal num­

bers. For instance, decimal

character location 1706 is the

third character from the left on

the fourteenth line down from

the top.

10 REM THIS APPLE INTEGER BASIC PROGRAM DISPLAYS LOWER CASE CHARACTERS. USE ESC

These sure are strange num­

bers. They were picked to sim·

plify the internal Apple II sys­

tem timing. As you can see, if

you just try to sequentially put

stuff on the screen, you'll put

down the top line, then the

ninth line down, then the seven­

teenth. Then you'll lose eight

characters down the drain
somewhere. Then onto the sec­

ond, tenth, eighteenth lines.

Then lose eight more charac­

ers. Messy, yes, but a great

hardware simplification.

TWICE FOR SHIFT LOCK. USE ESC ONCE FOR SHIFT OR RELEASE.

100 FOR CURS= 2000 TO 2039

110 CHAR= PEEK (-16384): IF CHAR<127 THEN 110: POKE (- 16368),0

120 IF CHAR= 141 THEN 180 .: REM CR

130 IF CHAR= 155 THEN 190: REM ESC

140 IF CHAR> 192 AND SHIFT= 0 THEN CHAR= CHAR -192

150 POKE, CURS, CHAR
160 IF LOCK=O THEN SHIFT=O

170 NEXT CURS
180 CALL -912: GOTO 100: REM SCROLL
190 IF LOCK= 0 THEN 200: LOCK= 0: SHIFT= 0: GOTO 110: REM RELEASE LOCK
200 IF SHIFT= 0 THEN 210: LOCK= 1: GOTO 110: REM SET LOCK ESC #2

210 SHIFT= 1: GOTO 110: REM SHIFT ON ESC #1

Program B. Lowercase display program to fill the screen with combined upper and lowercase text

via bottom line entry. SCROLL and RETURN work. No visible cursor or upper screen access.

As a general rule, if you can't

use hardware to simplify soft­

ware, then you use software to

simplify hardware. One or the

other. Works every time.

Suppose a programmer would

like to have a variable H for the

horizontal position with a 0 to

39 range and a variable V for the

vertical position ranging from 0

Microcomputing, December 1979 37

H =Horizontal position O(left) to 39(right)

V =Vertical position O(top) to 23(bottom)

For lines 0·7:
Address= 1024 +(128•V) + H

For lines 8-15:

Address= 1064 + (128•(V -8)) + H

For lines 16-23:

Address= 1104 + (128-(V -16)) + H

Fig. 6. One method of ca/cu/at·
ing Apple II display addresses.

to 23. Obviously, we need a way

to go from the H and V loca­

tions to the magic display

memory addresses.

The Apple II monitor does

this In the firmware with a dis­

gustingly elegant sequence,

BASCALC, starting at hex

$FBC1. BASCALC takes the H

value In $24 and the V value in

$25 and puts the result BASL In

$28 and BASH In $29. Thus, the

programmer uses H and V,

while the machine hardware

uses BASL and BASH, and

everybody is happy.

Unfortunately, quite a bit of

PEEKing, POKEing, pushing

and shoving Is Involved to call

this sequence from Integer BA­

SIC. Instead, let's find a BASIC

way to generate the right ad­

dresses.

Fig. 6 shows the math needed

to find a particular address on

the screen. The formulas are in

three parts, depending on what

third of the screen you happen

to be on. To find a screen loca­

tion, just use one of these for­

mulas, and the results should

agree with Fig. 5.

You can, of course, program

these formulas into integer BA­

SIC-and it's fun to do-but we

need something faster and

simpler. Fig. 7 shows us a look­

up table to do the same thing.

We store the leftmost address

initial

enter 1000 D IM 8(64)

for the 24 lines as an array of

values called B(V), meaning

" Base address for line #V." To

this, we add the horizontal val­

ue and get a result, CURS, that

has the correct display address

for a given H and V.

Note that there are two ways

to enter the program. The first

time you enter, you have to set

up the B(V) array and initialize

all the values. It's recommended

you do this every time you clear

the screen to make sure this

table is intact. After we are sure

the table Is properly stashed,

we can enter at 2000, and do the

simple one-line CURS calcula­

tion shown in 2020. It is very im­

portant to be sure that the V

and H values are, in fact, on the

screen. Otherwise, you might

end up POKEing a character In­

to memory somewhere off the

screen, plowing up a program

or some operating system. This

is why you should check H and

V (lines 2000 and 2010) lmmedi·

ately before you use them.

A Software Cursor

There doesn't seem to be an

obvious way to keep Apple II

compatibility and be able to

use the hardware cursor to

wink lowercase. So, a software

cursor can be used instead.

Fig. 8 shows us how to combine

your keyboard scanning with a

cursor routine that winks any

character on the screen by re­

placing the character with a

solid box, repeating a few times

a second.

A single loop is used to both

provide a cursor and test for

pressed keys. If no key Is

pressed, the loop will continue.

On the first trip through the

1010 8(0) = 1024:8(1) = 1152:8(2) = 1280:8(3) = 1408:
8(4) = 1536:8(5) = 1664:8(6) = 1792:8(7)= 1920

usual

1020 8(8) = 1064:8(9) = 1192:8(10) = 1320:8(11) = 1448:

8(12) = 1576:8(13) = 1704:8(14) = 1832:8(15) = 1960

1030 8(16) = 1104:8(17) = 1232:8(18) = 1360:8(19) = 1488

8(20) = 1616:8(21) = 1744:8(22) = 1872:8(23) = 2000

enter 2000 IF V>23 THEN V =23: IF V<O THEN V =0

2010 IF H>39 THEN H =39: IF H<O THEN H =0

2020 CU RS = 8(V) + H

Fig. 7. An integer BASIC sequence to find Apple II display memory
locations. For cold start, enter and initialize sequence at 1000. To
find a location after initialization, enter at 2000. CURS will carry
the correct display location to the instruction following 2020.

38 Microcomputing, December 1979

ENTEft CHAltACTElt

NO

LOCATE NEW CUfllSOft

Y[S

DO CTltL ACTION

Fig. 8. Flowchart for an editing display that combines a winking

software cursor within the keyboard testing loop.

loop, the cursed character Is

temporarily saved and is then

replaced with a box cursor. On

the 12th trip through the loop,

the box cursor Is removed and

replaced with the saved charac­

ter. On the 24th trip through the

loop, the sequence repeats.

So long as no key is pressed,

a winking cursor appears on

the screen. When a key finally

Is hit, the cursor Is Immediately

erased and replaced with the

correct character. If things hap­

pen to be on the second half of

the loop, the character simply

replaces itself. At any rate,

when we are sure we have a

pressed key, we make sure the

cursor goes away.

The key Is then tested to see

if It Is a character or a machine

command. If It Is a character, it

is entered. If it's a machine

command, the command is

acted on if valid and ignored if

not.

The new cursor location Is

found only after character entry

or machine command actions

are complete. The program

then jumps back to the main

loop, testing for pressed keys

and winking the cursor. Cursor

winking speed Is software ad­

justable.

One Interesting feature of

the combined cursor and key­

check loop Is that the cursor al­

ways goes on the Instant after a

new location appears. This is

much cleaner looklng and easi­

er to follow than the "aliasing"

that sometimes takes place

with rapid motions of a hard·

ware-blinked, asynchronous

cursor.

A Full Dual·Case Editing System

Program C shows a medium­

complexity full-editing system

that puts uppercase and lower­

case characters anywhere you

want on the screen, with full

cursor motions. Features in­

cluded are uppercase and low­

ercase, clearing, normal entry,

cursor right-left-up-down, car­

riage return, scrolling, erase to

end of llne, erase to end of para­

graph, lowercase shift and shift

lock. Four "hooks" are pro­

vided to interact with your disk

or hard-copy system or to add

other features. It's a simple

matter to add all the extras you

want.

In lines 100 through 200, we

set up the base address file for

our screen address tinder.

These values are rechecked

every time the screen is erased.

Line 140 gives us a clear screen

on startup and when called for.

It uses the clearing sequence

already in the monitor. Lines

160 through 180 find valid cur­

sor locations for us, starting

with H and V positions.

Our combination cursor loop

and keyboard test appears In

lines 200 through 280. A cursor·

counting v a r i a b l e , C C N T ,

counts from 0 t o 2 4 for us. On

count #1, the character being

cursed is stored temporarily as

CSTR. The cursor box (an ASCII

63, DEL) is loaded in its place.

On CCNT count #12, the orlgi·

nal character is replaced. On

CC NT count #24, the cycle re­

peats. Meanwhile, the keyboard

has been checked for a pressed

key 24 times. You can think of

CC NT as a divide-by-24 counter

that is clocked by the keyboard

testing. By changing the num­

bers, you can change the wink·

ing rate and the ratio of cursor

to character time.

Once a key is pressed, we re­

set the keyboard strobe and

make sure the cursed character

has been put back where it be·

longs. Line 270 does this for us.

Then, 280, we test for CTRL

keys.

If the pressed key happens to

be a character, line 300 decides

whether lowercase or upper­

case is to be displayed. Line

310 releases shift after a capi·

tal letter unless the shift is

locked.

Actual character entry takes

place in 400, while the cursor is

adjusted in 410 and 420. If we

go off-screen to the right, H is

reset to O and V is incremented

down-screen by one. If V goes

off-screen, we call for a scroll,

using the firmware scroll se­

quence in the monitor. After re·

positioning the cursor, the pro­

gram returns to the main cursor

and keycheck loop by jumping

to 160. At this time, the cursor

starts winking in the new loca­

tion.

CTRL keys are processed in

lines 1000 to 1040. Most are ob­

vious. Line 1000 is needed so

you can use the firmware erase­

to-end-of-screen in the monitor;

this step transfers the BASIC H

and V values to the slots in the

monitor where they are needed.

Unfortunately, the monitor's

erase-to-end-of-line firmware

sequence doesn't seem to be

as useful (it doesn't calculate

its own base address), so this

shorter erase sequence is done

on our own in line 1080.

The spare hooks are shown

40 M/crocomputlng, December 1979

in 1100 through 1130. Simply re·

place 160 (return-to-keyboard·

loop) with the location you need

for access to your disk, printer

or other program. About a doz­

en other hooks can be added,

just by picking new CTRL com·

mands from Fig. 3. Remember

that CTRL·C is excluded as this

returns you to the integer BA·

SIC operating system.

Should no valid CTRL key be

found, the jump in 1140 puts us

back into the keyboard check·

Ing business.

Lines 2000 through 2020 do

the now familiar ESCAPE pro­

cessing for the lowercase shift

lock. As before, a single ES·

CAPE gives one capital letter.

Two in a row locks us into capi·

tals only. Should we be locked

into capitals only, the next ES·

CAPE unlocks back to lower·

case.

Some Extras

You can add just about any·

thing you like to this editor pro·

gram. For super-easy editing,

you might like to add an addi­

tional keypad that generates all

the motion commands with a

single keystroke each. This

h e a v y w e i g h t modification

would be handy for word pro·

cessing, typesetting and so on.

It's fairly obvious how you

would add diagonal and cursor

home motions, cursor OFF-ON,

tabs, etc. To do really fancy

editing, you have to be able to

10 REM EDITING DUAL CASE DISPLAY SYSTEM FOR APPLE I I

add and delete characters.

How you do this depends on

the rules you choose to set up

for your particular system.

S e v e r a l ful I e d i t o r s a r e

available a s software packages

that may be of help to you.

A simple example of a delete·

character subroutine Is shown

in Program D. Starting at the

cursor plus one, every charac·

ter on the line is moved one to

the left. When this is finished,

the last character will be re·

pealed twice. The duplicate

end character is then erased.

The repeated moves take place

in the 4000 to 4030 loop, while

the end-character erasure hap·

pens in step 4040. This particu·

lar delete-character sequence

20 REM CLEAR= CTRL X CURSOR RIGHT= RIGHT ARROW

SHIFT= ESCAPE CURSOR LEFT= LEFT ARROW

LOCK= ESCAPE X2 CURSOR UP= CTRL A

30 REM UNLOCK= ESCAPE CURSOR DOWN= CTRL B

RETURN= RETURN ERASE EOL = CTRL D

HOOKS= CTRL Q,R,S.T ERASE EOP = CTRL W

100 DIM 8(64): REM SET UP BASE ADDRESS TABLE

110 B(O) = 1024:B(1) = 1152:8(2) = 1280:8(3) = 1408:

8(4) = 1536:B(5) = 1664:B(6) = 1792:B(7) = 1920

8(8) = 1064:B(9) = 1192:8(10) = 1320:B(11) = 1448

120 8(12) = 1576:B(13) = 1704:B(14) = 1832:B(15) = 1960

8(16) = 1104:B(17) = 1232:B(18) = 1360:8(19) = 1488

B(20) = 1616:B(21) = 1744:B(22) = 1872:B(23) = 2000
140 CALL -936: H =0: V=O: REM CLEAR SCREEN; HOME CURSOR

160 IF V>23 THEN V = 23: IF V<O THEN V =0

170 IF H>39 THEN H =39: IF H<O THEN H =0
180 CURS= B(V) + H: REM FIND CURS ADDRESS AFTER VALID V,H

200 CCNT=O

210 CCNT = CCNT + 1

220 IF CCNT>1 THEN 240: CSTR =PEEK (CURS)

230 POKE (CURS),63: REM SAVE CHAR; WRITE CURSOR

240 IF CCNT = 12 THEN POKE CURS,CSTR

250 IF CCNT>23 THEN CCNT = 0: REM UNWINK CURSOR

260 CHAR= PEEK (-16384): IF CHAR<127 THEN 210

270 POKE (-16368),0: POKE CURS,CSTR

280 IF CHAR<160 THEN 1000: REM CTRL KEY TEST

300 IF (CHAR>192 AND SHIFT=O) THEN CHAR =CHAR -160: REM LOWER CASE ONLY IF

UNSHIFTED CAPITAL LETTER

310 IF LOCK=O THEN SHIFT=O: REM RETURN TO LOWER CASE IF UNLOCKED
400 POKE CURS, CHAR: REM ENTER CHAR

410 H = H + 1: IF H<40 THEN 160: H =0: REM ADJ H POS
420 V = V + 1; IF V>23 THEN CALL -912: GOTO 160: REM ADJ V POS; SCROLL IF OFF SCREEN

1000 POKE 36.H: POKE 37,V: REM TRANSFER HV TO MONITOR FOR EOS

1010 IF CHAR= 152 THEN 100: REM CLEAR AND HOME ON CTRL X

1020 IF CHAR #141 THEN 1030: H =0: V = V + 1: IF V>23 THEN CALL -912: REM CARRIAGE

RETURN. SCROLL IF OFF SCREEN.

1030 IF CHAR= 136 THEN H = H -1: REM BACKSPACE ON ARROW

1040 IF CHAR= 139 THEN H = H + 1: REM ADVANCE ON ARROW

1050 IF CHAR= 129 THEN V = V -1: REM CURSOR UP ON CTRL A

1060 IF CHAR= 130 THEN V=V + 1: REM CURSOR DOWN ON CTRL B
1070 IF CHAR= 155 THEN 2000: REM ESCAPE SHIFT SEQUENCE

1080 IF CHAR #132 THEN 1090: FOR H1 = H TO 39: POKE (B(V) + H),63: NEXT H1: REM ERASE TO

END OF LINE ON CTRL D
1090 IF CHAR= 151 THEN CALL -958: REM MONITOR ERASE EOS ON CTRL W

1100 IF CHAR= 145 THEN 160: REM SPARE HOOK ON CTRL Q DC1

1110 IF CHAR= 146 THEN 160: REM SPARE HOOK ON CTRL R DC2
1120 IF CHAR= 147 THEN 160: REM SPARE HOOK ON CTRL S DC3

1130 IF CHAR= 148 THEN 160: REM SPARE HOOK ON CTRL T DC4
1140 GOTO 160: REM RESUME KEYBOARD SCAN ON UNUSED CTRL COMMAND

2000 IF LOCK=O THEN 2010: LOCK=O: SHIFT =0: GOTO 160: REM RELEASE LOCK

2010 IF SHIFT =0 THEN 2020: LOCK= 1: GOTO 160: REM SET LOCK ON SECOND ESCAPE

2020 SHIFT= 1: GOTO 160: REM SHIFT ON FIRST ESCAPE

Program C. Full lowercase Apple II editing display system.

operates only on a single line.

Lines further down the screen

are not affected.

Inserting extra characters is

a more difficult problem, since

everything has to be shoved

around the screen to make

enough room. Once again, you

have to pick the shoving rules

you want to use for your partic·

ular editing needs.

One possibility, insert-a-char­

acter subroutine, is shown in

Program E. This uses a rule that

says it will keep bumping char­

acters until it finds a line whose

last character is a space. Usu­

ally, this will be the line you are

working on, but if not, charac­

ters will keep getting bumped till

a space at the end of a line is

found. Then the bumping stops

and the rest of the screen stays

the way It was.

Here are the steps involved in

this insert-a·character se­

quence:

1. A check is made to find

out how many lines are in·

volved, till one is found with a

space at the end (lines 3000 to

3040).

2. Everything on the bottom­

most line to be bumped shifts

one to the right. Remember that

at least the rightmost character

is a space on this line.

3. There will be a double

character at the left of the line,

provided it's not the one that

had the cursor on it. This dou­

ble character is replaced with

the last character on the previ·

ous line (3160, 3170).

4. The process repeats as of­

ten as needed for all but the top

line to be bumped. The loop is

done with line 3100.

5. The line with the cursor on

it gets characters bumped only

from the cursor to the end of

the line and has no need to bor·

row a character from a previous

line. The change in policy for

the cursed line is handled by line

3110.

6. Finally, everything will be

bumped, but a duplicate char·

acter will remain at the cursed

location. This dupe is erased in

line 3190.

This is a fairly simple inserter

that works fairly well and rea­

sonably fast. If you don't like its

rules, change them to suit your-

self. The sequence is rather

slow if you use it over and over

again, as you might while justi·

lying a whole page of text. You

should be able to speed it up

considerably if you want. The

rule selected does have one

possible bug in it-repeated in·

sertions can swallow end

spaces and run words together,

since the next line bumping

takes place with a character in

the last slot and does not if a

space is there. Requiring two

spaces at line end may help.

There are all sorts of other op-

4000 FOR H1 = H TO 38

4010 CURM=B(V)+H1

hyphening and short-line rules

will you use for this?

• Variable character lines-in

which you can go as long as 80
characters for text and form let·

ter editing.

As a hint to longer lines, just

select pairs of lines when they

are needed and act on these

line pairs. Thus you should be

able to output up to 80 charac­

ters for a business letter or a

manuscript to your hard copy,

while still viewing the results

on a normal 40-character Apple

up to you since the results are

4020 POKE CURM,PEEK (CURM + 1): REM MOVE ONE LEFT
4030 NEXT H1

4040 POKE (B(V) + 39), 160; REM BLANK END CHAR

4050 RETURN

Program D. BASIC subroutine to delete a single character on
the Apple II display. It starts at the cursed location and moves
everything on its own line left one character. The last character
is erased.

3000 V2=0: H2 =0

3010 FOR V1 = V TO 23: REM FIND FIRST END SPACE

3020 CEND=PEEK(B(V1) + 39)

3030 IF CEND = 160 THEN 3100

3040 V2 = V2 + 1: NEXT V1

3100 FOR V1 =(V2 + V) TO V STEP -1: REM: NEXT LINE

3110 IF V1=V THEN H2=H

3120 FOR H1 =38 TO H2 STEP -1: REM SHIFT A LINE

3130 CURM=B(V1)+H1

3140 POKE (CURM + 1), PEEK (CURM)

3150 NEXT H1

3160 IF V1 = V THEN 3180: REM MOVE (V1 -1).39 TO Vl,0

3170 POKE B(V1).PEEK (B(V1 -1)+39)

3180 NEXT V1

3190 POKE (B(V) + H). 160: REM: DELETE CHARACTER
3200 RETURN

Program E. BASIC subroutine to insert a single character on
the Apple II display. It starts at the cursed location. It finds the

first available characters as needed. The cursed character is

then erased.

lions, depending on what you

want your particular editor to
do.

Your turn: Add the following

extras to your editing pro·

gram:

•Ragged justify right-in

which whole words are never

broken on the right side of the

screen and you can continu­

ously type without carriage re­

turns.

•Flush justify right-in which

everything ends up square on

the right side of the screen as

needed for typesetting. What

application specific. Have fun

with all this.

Further Hardware Mods

Some of the more popular

App le Ii software uses the

screen-reversal feature. This

software may not be reason·

ably displayed with the hard­

ware mods we've shown you so

far. The checkbook program is

one example, where deposits

are shown reversed as black on

white numerals. Is there some

way we can still run these pro-

grams and have lowercase?

One obvious way is to use a

switch to select either screen

reversal or lowercase. Fig. 9

shows where this switch goes.

Only an S PST switch and a re­

sistor need be added to the

existing modifications. This

switch can be mounted along

the right side of the circuit

board far enough to the rear

that it is easily reached. A min­

iature slide switch held in place
with double-stick foam should

do the trick.

The switchover works by pro­

viding a DL6 signal to A 11 and

A13 for uppercase and a logic 1

for screen reversal. If we pro­

vide DL6, we get lowercase

since A 11 forces the lowercase

ASCII bit 6 output, and A13 in­

hibits screen reversal. If we pro­

vide a logic 1, lowercase is in­

hibited and reversal is allowed

when it is called for.

You put the switch in the re·

verse position for programs

that need reverse video contin­

uously displayed. You put the

switch in the lowercase posi·

lion when you must display

lowercase.

Your turn: The character gen­

erator in module A also will dis·

play CTRL characters if you

make DL5 and ASCII bit 6 both

zeros. When would you want to

display control characters?

How can you do this? Can you

e l i m i n a t e the c h a ngeover

switch and replace it with a se­

ries of software flags that gives

you everything at once-rever­

sal, full case blinking, lower­

case, CTRL displayed on com­

mand and invisibility on exist·

ing software?

Note that you can also use

other character generators by

suitably c hanging the pins
around. There's also a lower­

case 2513 you can piggyback

onto the exisiting uppercase

one.

You can also use your own

character generator by burning

your own 2716 EPRO M. The ad­

vantages of the EPROM are

that you can get any character

and lots of graphics symbols

that you like on a hardware

basis. For instance, instead of

the awkward treatment of the

descenders on the lowercase g,

Microcomputmg, December 1979 41

p, and so on, you could use

5 x 7 uppercase for caps and

5 x 5 uppercase for lowercase.

This can be both legible and at­

tractive.

There is one limitation to the

2716 when you use it with an

only slightly modified Apple II.

With the Apple II, only five out­

put lines are used, with the re­

maining three being permanent

blanks. Unless you rework the

output video, your 2716 would

5188

I
OL6

be more suited to new charac­

ters than to graphics symbols

that have to butt against each

other.•

Apple II conversion kits, TVT

6-518 Module As, Cheap Vid·
eo Cookbooks and other

cheap video stuff are avail­
able from:
PAIA Electronics
1020 West Whilshire
Box 14359

Oklahoma City OK 73114

.LOWER l •'"REVER�· NEW PULL�UP RESISTOR
CASC-

+5V(l4/All}

NEW / 4.7K

SWITCH --�--�

Fig. 9. A changeover switch and pul/up resistor may be added to

give an option of lowercase or reverse video displays.

MAEiSAMTM
KEYED FILE

MANAGEMENT SYSTEM
Sophisticated applications made simple.
Put data at your fingertips ... easily accessed. displayed. and
updated by key. MAGSAM'" allows your CBASIC programs to
create and access sophisticated keyed file structures through
simple CBASIC statements.

Powerful, affordable, and easy to use.
MAGSAM'" is now available in three versions offering an array of
features and capabilities. Standard MAGSAM'" features include
random by key. sequential by key. generic by key. randomly by
record number. and physical sequential access techniques. Each
MAGSAM'" Package incudes the MAGSAM'" file manager. tutorial
program. file dump utility. User Guide. Reference Card. and one
year update service.

• MAGSAM'" - Most advanced version. Secondary Indexing with
any number of keys. and Record and Key Deletion with automatic
reuse of freed space $145t
• MAGSAM II'" - Single Key support with full Record and Key
Delete capability $99t
• MAGSAM I'" - Entry level version. Single Key support without
Delete functions. $75t
• MAGSAM'" User Gulde only - comprehensive tutorial and
reference manual. $15

Available for 8" soft sector. M1cropohs. and TRS-80 dosk formats.
Requires CP/M" or derivative and CBASIC. Distributed as CBASIC
subroutines in source form.

Visa and Masterchagre welcome Dealer and OEM inquiries
invited.

(MAG) MICRO APPLICATION& GROUP
7300 CALDUS AVENUE

VAN NUYS. CA 91406

• Trademark of 0191tal Research. t Single site ltcense

42 Microcomputing, December 1979

..-M103

SUPPORTING

8800
COMPUTERS

High Perfonnance Cassette Interface
• FAST • 4800 Baud Loads 4K in 8 Seconds!
• RELIABLE • Error Rate Less Than 1 in 1 o• Bytes.
• CONVENIENT • Plugs Directly Into The SWTPC.
• PLUS - A Fully Buffered 8 Bit Output Port Provided.
• LOW COST • $49.95 For Complete Kit.

•OPTIONAL· CFMl3 File Manager.
Manual & Listing $19.95
(For Cassette Add) $ 6.95

TERMS: CASH, MC or VISA: Shipping & Handling $2.00

JPC PRODUCTS CO. ..-m

P.O. Box 5615, Albuquerque, N. M. 87185
Order Phone (505) 294-4623

RECYCLE(D)
COMPUTERS

• ••

BUY -/:t SELL -/:t SWAP

Hardware & Software
NEW PRODUCT ANNOUNCEMENTS

32 pages or morr

Mailed 1st Class every 3 Weeks

lyr. (18 issues) i:t $3.75
•••

ON LINE
..-02

llabt Jjettlt,l}ublisbtr c.fstablisbtb
24695 Santa. Cruz Hwy .• Los Gatos, CA 95030

THE IEST WAY TO DETEIMINE IF ON _LINE CAN IE CE VALUE TO YOU IS TO UY A • • • •

